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Synaptic weights store memories that can last a lifetime. Yet,
memory depends on synaptic protein receptors that are recycled in
and out of the membrane at a fast rate, possibly several times an
hour. Several proposals to bridge this vast gap in time scales
between memory and its molecular substrate have relied on
bistable molecular switches. Here, we propose an alternative to
this approach based on clusters of interacting receptors in the
synaptic membrane. We show that such clusters can be metastable
and that the lifetime of such clusters can be many orders of
magnitude larger than the lifetime of the receptors of which they
are composed. We also demonstrate how bidirectional synaptic
plasticity can be implemented in this framework.

memory | model | synaptic plasticity

Synaptic efficacies depend on the number and conformational
states of receptor proteins. However, receptors have a limited
dwell time in the synaptic membrane, and they recycle in and out
of the synapse possibly several times an hour (1, 2). Conformational
changes due to phosphorylation are also short lived and can be
reversed by phosphatases and receptor turnover. Yet, synaptic
strengths are the basis of learning and memory processes that can
persist a lifetime. The central difficulty in understanding the
stability of memory and learning arises because synaptic efficacies
must be uniquely regulated at the level of individual synapses. This
observation rules out many possible mechanisms that are solely
based on whole-cell processes, such as the regulation of gene
expression.

The fundamental problem of preserving synapse-specific synap-
tic efficacies for long times, orders of magnitude larger than the
lifetime of their molecular substrates, was pointed out by Francis
Crick (3), who proposed a molecular switch as a likely solution. This
idea was extensively expanded and investigated by John Lisman
etal. (4,5). Lisman hypothesized that this problem can be solved by
a molecular switch in the signal transduction pathway that regulates
synaptic efficacy and proposed a specific mechanism based on
autophosphorylation of calmodulin-dependent PK II (CaMKII)
holoenzymes. Modeling studies show that autophosphorylation of
CaMKII results in a positive feedback loop that can keep the
enzyme in an active state despite dephosphorylation by phospha-
tases and protein turnover (4, 5). The CaMKII hypothesis is
appealing because it is well established that CaMKII and its
autophosphorylation plays a key role in the induction of long-term
potentiation (LTP) (6). However, there is no significant experi-
mental evidence demonstrating that activation or autophosphory-
lation of CaMKII is necessary for the long-term maintenance of
synaptic efficacies (7). Other components of the molecular signal
transduction pathways controlling synaptic plasticity have also been
proposed as possible molecular switches (8).

In this paper, I propose a theory in which the stability of synaptic
efficacies is based on local interactions between receptors within a
single synapse. Specifically, I propose that interactions between
receptors within a cluster can alter the trafficking of receptors in
and out of the synaptic membrane, thereby creating a metastable
synaptic state that significantly increases the stability of synaptic
efficacy without changing the mean dwell time of receptors in the
synaptic membrane. The cluster theory proposed here is formally
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distinct from equilibrium theories of synaptic stability because it
does not result in equilibrium states that are stable forever. The
synaptic states generated by the cluster theory are metastable; at
some point in time, these states will break and decay. However, the
lifetimes of these metastable states are orders of magnitude larger
than the lifetimes of their components.

This paper also demonstrates how bidirectional and synapse-
specific long-term plasticity can be incorporated into the model.
Finally, I show that statistical fluctuations in the number of recep-
tors are a signature of this model that might be used to distinguish
it from other synaptic models.

The cluster theory of synaptic stability is presented here in an
abstract form. However, if the general principals of this theoretical
model are found to be consistent with experimental evidence,
identifying the molecular basis of the cluster model will become
important.

Mathematical Methods

The variable S; is an occupation variable of the lattice site
denoted by indices i and j. If the site is occupied, S; = 1;
otherwise, S;; = 0. Insertion of a new receptor into the membrane
can occur at any unoccupied site in the lattice, and internaliza-
tion of a receptor can occur only at occupied sites. In this
formulation, internalization occurs at a fixed rate, independent
of interaction with other receptors. I used a fixed internalization
rate u = 1/7, per unit time, which implies that the probability
of internalizing a receptor at site (i, j) in a small time step At is

P(i, j, t:t + A,) = S;pAt. [1]

Throughout this paper, we use w = 1, which implies that the
mean dwell time of a receptor in the membrane is 1 unit of time.
Typically, we use a time step At < 0.01, which is significantly
smaller than the other time constants in this system.

Inserting a new receptor into an unoccupied site depends on the
occupation in the vicinity of the unoccupied site. I calculate a
“field” (i, ) at each unoccupied site 7, j that measures the number
of membrane-embedded receptors in the local neighborhood. The
equation defining the field (A;(i, j)) is described in Eq. 4.

The field A will determine the conditional probability of insert-
ing a new receptor into an unoccupied site. A typical parameter
used in our simulations is L; = 1.5; however, similar stability is
obtained for the range of L; = 1.2-2.0. The lattice repulsion
constant used for the second population is L, = 0.9.

To determine insertion probability we use

Pk(l7]):1/(1 +CXp(_Bhk(l,]))), [2]

which varies smoothly from 0 to 1 as a function of A(i, j). The
constant 3 is the slope of this function. Stability increases for larger
B. I typically use B = 50. However, values of B > 25 are sufficient
for stability of up to ~1,000 time steps, with 49 receptors in the
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Fig. 1. Model assumptions. (A) Receptors in the synapse are internalized stochastically at a constant rate, and their probability of staying in the synapse decays
exponentially with a time constant of 1. (B) The rate of insertion depends of the number of nearest neighbors. Given the occupation state (Left), a field is
calculated (Right). The probability of inserting a new receptor is proportional to this field. The field can be computed from convolving the nearest-neighbor
function (Center) with the state. The field is higher within the cluster and close to its boundaries than outside the cluster or near the isolated receptor.

initial state. This stability depends on other parameters, such as L.
The probability of inserting a receptor in an unoccupied site in a
very small time step At is then

= 8y) (pur AtP (i, j)), [3]

where py is the probability that a receptor of type k is present in a
position near the empty site, and r is the rate of transition into the
empty site. Typically, we use p; = 0.95 and r = 10, which implies that
for P, =~ 1, the average time for inserting a receptor into a vacant
site with a high 4, is ~0.1 units of time, significantly faster than the
internalization rate and slower than the typical time step used. Eq.
3 is arrived at for small Az by approximating the expression for finite
Ar: prAtPi(i, j) ~ 1 — exp(pirAtPi(i, ).

The key to stability is not the identity of specific parameters, such
as pr and r, but their consequence that the characteristic time for
insertion into an empty site in a cluster is much shorter than the
characteristic time of removing a receptor from a cluster.

To reduce run time, we use parallel dynamics. The use of parallel
dynamics is not a problem because we use small time steps in which
a very small number of events occur across the whole lattice. I ran
afew random sequential simulations and obtained indistinguishable
results.

PG, j) =1

Results

The cluster theory of synaptic stability is based on several
assumptions: (i) Synaptic efficacy is proportional to the number
of postsynaptic receptors [for example, a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors]. (ii) Re-
ceptors in the postsynaptic density are clustered. (iif) The
insertion rate of a receptor in the vicinity of other receptors in
the cluster is much higher than for an isolated receptor. (iv) The
rate of receptor removal from the cluster is independent of
interactions with other receptors in the cluster. Assumptions i—iii
are essential assumptions of this model, whereas assumption iv
could be altered while preserving the main features of the model.
It is important to note that the insertion rate (on rate) and
removal rate (off rate) are controlled independently and not
governed by a single parameter, which is important for the robust
functioning of the model and makes it formally distinct from an
Ising spin model of statistical physics (9) (see section 3 of
Supporting Text, which is published as supporting information on
the PNAS web site).

The effect of assumption iv is that the dwell time of a receptor
in a cluster is the same as that of an isolated receptor and is
independent of cluster interactions. From a biophysical perspective,
it might seem more plausible that the on rate is constant and the off
rate is neighbor-dependent. Section 2 of Supporting Text examines
the consequences of this off-rate model and shows that it extends
the lifetime of clusters by extending the lifetime of the single
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receptors, thus not really addressing the problem. I discuss below
how the on-rate model presented here might be justified on a
biophysical basis.

For simplicity of implementation, the model is implemented on
a square grid. Insertion and removal of synaptic receptors is based
on the following specific sequence of events. First, at each time step
(Ar) and for each synaptic site occupied by a receptor, the receptor
can be randomly removed from the cluster with a probability uAz.
This random removal implies that each receptor has a mean dwell
time of 7, = 1/ and that its average kinetics are exponential (Fig.
1A); I typically use w = 1, so that times here are measured in units
of the mean dwell time of synaptic receptors. Next, at each
unoccupied receptor site, a field /; is calculated such that its value
is the number of occupied neighboring sites minus a lattice repul-
sion constant L.

hl(l>]):(zsl,m1(ll>m])Ll 5 [4]

Im

where 7, j and /, m are indices of sites in a two-dimensional synaptic
surface and S;; is an occupation variable of the site labeled by
indices i andj that is 1 if a site is occupied and 0 if not. The function
I is an interaction function. A simple example of an interaction
function is the nearest-neighbor function, which assumes that only
the four nearest neighbors contribute and has the form

i1
’(”1):{0 2+ 2 # 1. [5]

Throughout this paper, I assume this simple nearest-neighbor
interaction function, which could easily be generalized to more
complex local functions.

An example of the field calculated for a specific occupation
pattern is given in Fig. 1B. The field (%) calculated determines the
probability of inserting a new receptor into an empty site. I
implement assumption iii by setting the probability of insertion to
be a steeply increasing monotonic function of this field (see Eq. 2).
The primary effect of this implementation is that the insertion
probability at a site with many neighbors (within a cluster or on its
boundary) is orders of magnitude higher than for a site with a small
number of neighbors.

Stability characteristics are demonstrated by simulations of clus-
ter dynamics (Fig. 2). Starting from an initial state of 49 receptors
(a square of 7 X 7 receptors), single receptors are randomly
internalized, and new ones are inserted in their place, resulting in
afluctuating number of receptors at each time step. Examples of the
receptor configurations at different time steps are shown in Fig. 24
(see Movie 1, which is published as supporting information on the
PNAS web site). The number of receptors in such a cluster
fluctuates around stable mean, which is preserved for periods of
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Fig.2. Metastable clusters of receptors. (A) States of
a cluster of receptors at different times from a single
simulation. (Left) The initial state (T = 0). (Center and
Right) Two additional times, T = 50 and T = 100. The
initial state was a square with dimensions of 7 X 7
receptors. Gray squares represent a site occupied with
a receptor; black represents an unoccupied site (see
Movie 1). (B) The number of receptors as a function of
time for three different simulations with the same
initial conditions. The number of receptors in a cluster
continuously fluctuates. Occasionally, the cluster size
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time that are orders of magnitude longer than the lifetime of any
single receptor in the cluster. Different simulations with a different
sequence of random events produce different cluster dynamics and
lifetimes (Fig. 2B).

All simulations in this paper were carried out with a square grid.
However, different grid structures can also support metastable
states. For example, see Movie 2, which is published as supporting
information on the PNAS web site, in which stability in a triangular
grid is demonstrated.

The metastability of the clusters is parameter-dependent. In
section 1 of Supporting Text and in Fig. 7, which are published as
supporting information on the PNAS web site, I show the param-
eter region (3, L) that supports metastability. For example, at B =
50, a lattice repulsion constant that is too large (L; > 2.0) causes
the clusters to rapidly shrink, and if it is too small, (L; < 1.2) clusters
will grow. In general, the metastable region exists for values of
intermediate values of L, and is wider for higher 8. Deterministic
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exhibits a jump downward, which occurs by a deletion
of a complete edge.

insertion (8 — ) would maximize the metastable region and the
lifetime of clusters in this region. For stability, it is important that
the interaction between receptors are short range. Apart from
nearest-neighbor interactions, other short-range interaction func-
tions, which fall rapidly enough with distance, support metastability
as well.

Cluster instability originates at the boundaries where there are
fewer nearest neighbors. Change in the synaptic state usually results
from the deletion of an entire edge of a cluster. Therefore, jumps
in cluster size typlcally have magnitudes of ~\/N, where N is the
number of receptors in the cluster. Because the ratio between the
area of a cluster and its perimeter falls with cluster size, cluster
stability is likely to be size-dependent. Kinetics of clusters with a
different number of receptors in the initial condition (Fig. 3 A-C)
demonstrate the size dependence of cluster lifetime and the discrete
jumps in cluster size. The size dependence of cluster lifetime is
summarized in Fig. 3D, where lifetime is defined as the time before
the first downward shift to a new metastable state.

0

100 200 300 400 500 0 200 400 600
time step time step

800 1000

Fig. 3. Cluster lifetimes depend on their initial size. (A-C)
Shown are simulations displaying receptor number vs. time in
three differentsimulations with three different initial sizes: 25
(A), 36 (B), and 81 (C). (D) A summary of median cluster
lifetimes as a function of size. The x axis gives the linear size,
which is the square root of the initial number of receptors.
Both the x and y axes are in logarithmic scale. Cluster lifetime
is defined as the time until the first downward jump. Results
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are medians over a number of independent simulations (num-
bers indicated above each data point).
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Fig. 4. Induction of LTP using the cluster model, based on the activation of
an additional population of receptors with a lower repulsion constant. (A) The
temporal evolution of a cluster. Gray squares represent the first population of
receptors, and white represents the second population. The second popula-
tion is active from 4.5 to 5 time steps. This brief activation of the second
population causes an increase in the cluster size and is rapidly replaced with
the first population once inactivated (see Movie 3). (B) The total number of
receptors in the cluster (solid line) and receptors of the second population
(dashed gray line) for the same simulation as in A. The vertical dashed lines
indicate the time period in which the second population is active.
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The median receptor lifetime of a 9 X 9 cluster is ~25,000 times
the dwell time of a single receptor. The actual dwell time of
receptors in a real synapse is not well known. Some indirect
methods produced surprisingly short estimates of 20 min (1, 2).
Assuming a receptor dwell time of 20 min and a cluster with an
initial size of 9 X 9 receptors produces an estimate that the median
cluster lifetime is >1 year.

Bidirectional Synaptic Plasticity. Synaptic efficacies should be stable,
but it must also be possible to bidirectionally alter them in a
synapse-specific manner. Both LTP and long-term depression
(LTD) are synapse-specific and stable over long periods of time (10,
11), and such synapse specificity is necessary for the ability to store
memories and learning.

LTP can be implemented in the cluster model in various ways.
One possibility is to introduce the hypothesis that the induction of
LTP activates a second population of receptors with a higher
probability of insertion on the external boundaries of a cluster.
Mathematically, this form of LTP is implemented by assuming a
smaller repulsion constant for this population. Assuming L, = 0.9
for this population, a single neighbor is sufficient for insertion, and
zero neighbors are insufficient. I assume that this second population
is only very transiently activated, and at a low concentration.

Simulation results displaying the induction of LTP are shown in
Fig. 4 (and Movie 3, which is published as supporting information
on the PNAS web site). The second population of receptors,
displayed in white, is transiently activated between 7= 4.5 and T =
5. Receptors from the second population are added primarily on the
boundaries of the original cluster (7' = 4.75), resulting in growth of
the original cluster by addition of new lines or rows (7' = 5.25). After
the second population is inactivated, it is rapidly replaced by
receptors of the first constitutive population (7' = 7.5). The solid
line in Fig. 4B shows the total number of receptors as a function of
time, and the dashed line shows the number of receptors from the
second, transient population.

LTP can also be induced with only one population of receptors
by transiently reducing the value of L;. In Movie 4, which is
published as supporting information on the PNAS web site, we
show an example in which LTP induction is accomplished by
reducing L; to 1.0 between the times 7 = 4.95 and T = 5.0.

One consequence of using these protocols for LTP is that the
probability of inducing LTP with a transient stimulus increases with
the size of the current cluster. However, the relative minimal size
of an upward jump is smaller. These consequences might be altered
if additional assumptions are made about induction. For example,
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Fig. 5. Induction of LTD by a transient increase of receptor internalization.
(A) Temporal dynamics of a cluster in which the receptor internalization rate
isincreased by a factor of 4 between T=4and T =5 (see Movie 5). (B) The total
number of receptors in the cluster as a function of time during the induction
of LTD.

the number of intracellular receptors available at a synapse might
be smaller for larger synapses, thus reducing the probability of LTP
in large synapses. The computational consequences of the size
dependence of the probability of inducing LTP and the relative
magnitude of an LTP event are yet to be investigated.

Reduction of synaptic efficacies, LTD, has been implemented in
several ways. A simple implementation is to transiently increase the
endocytosis rate, which is implemented here by setting the endo-
cytosis time constant to 7 = 1/4. Fig. 5 (and Movie 5, which is
published as supporting information on the PNAS web site) shows
simulation results of the induction of LTD using this method.
Typically, this method results in a large transient decrease in
synaptic efficacy followed by a partial recovery. We have examined
another method of inducing LTD that depends on transiently
increasing L. This method produces qualitatively similar results but
differs in details such as the magnitude of the transient decrease and
the typical induction time of LTD (Movie 6, which is published as
supporting information on the PNAS web site).

Fluctuations of Metastable States and Comparison to an Equilibrium
Model. The ultimate experimental test for the cluster model would
be to directly examine its hypotheses, such as the assumption that
insertion of new receptors near other receptors is much more likely
than insertion in an isolated site. Direct confirmation of this
hypothesis requires imaging at a resolution beyond the available
technological limits.

Another approach is to test consequences of the model that
differentiate it from alternative models. I have chosen to examine
fluctuations from the mean during a metastable state in our model
and compare them to fluctuations of an equilibrium model. The
advantage of using an equilibrium model for comparison is that its
predicted fluctuations can be calculated analytically (section 4 of
Supporting Text).

I assume a simple equilibrium model for receptor trafficking in
and out of the synapse. In this simple model, the total population
of receptors is composed of two subpopulations, a synaptic popu-
lation (Rs) and a nonsynaptic population (R;), such that the total
number of receptors Ry + R; = Ry is fixed. The kinetic diagram
describing this process is

K,
Ri== R, [6]
K-y

where K; and K_ are the forward and backward kinetic coeffi-
cients. Although the kinetic coefficients and the total number of
receptors Rt might change as a function of synaptic plasticity, here
I analyze the dynamics and fluctuations of the equilibrium model
assuming that the kinetic coefficients and Rt remain constant.
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The equilibrium model does not address the central issue exam-
ined in this paper: how to obtain stable, synapse-specific synaptic
efficacies. In the equilibrium model, bidirectional synaptic plasticity
can be obtained by changing the kinetic coefficients or the total
number of receptors. However, it is not clear how these variables
could be changed by a brief and transient plasticity paradigm but
maintained for prolonged periods of time. Presumably, this pro-
longed change would be controlled by molecular processes up-
stream from the receptors, which are not specified here.

I use the Fano factor, defined as the variance/mean of the
receptor number, as a statistical measure of fluctuations. For the
equilibrium model,

F=(0-p9, [71

where P¥ is the probability of a receptor being in a synaptic state,
or, equivalently, the fraction of receptors in the synaptic pool (see
section 4 of Supporting Text). The dependence of F on P¥is shown
in Fig. 64.

The Fano factor for the cluster model was calculated for multiple
simulations with different initial sizes (Fig. 6B). I carried out five
simulations for each initial size and calculated the Fano factor over
the initial metastable state. The Fano factor in the cluster model
seems independent of the initial size, with an average value over all
conditions of 0.11. If the Fano factor were calculated over periods
of time spanning transitions from one metastable state to another,
itwould have a significantly higher value. For the equilibrium model
to have Fano factors as small as those of the cluster model, we would
have to assume that ~90% of the receptors reside in the synaptic
pool. This prediction is measurable and could be used to distinguish
between these two different models. However, the technique used
to assess the number of synaptic receptors and their fluctuations
must have very small measurement errors, as not to obscure the
variability of the receptor number.

Discussion

The cluster model presented in this paper is proposed as a possible
mechanism for long-term stability of synaptic efficacies. I have
demonstrated that a synapse formed from a cluster of interacting
receptors can have stable efficacies for periods of time that are
several orders of magnitude larger than the dwell time of any single
receptor in the cluster and that the lifetime of clusters increases
rapidly with the number of receptors in the cluster. Estimates of the
number of AMPA receptors in a synapse using anatomical methods
are on the order of 50-100 (12). Physiological methods estimate
that the number of postsynaptic AMPA receptors on spines of CA1
neurons are on the order of 60-190 (13, 14). A cluster with an initial
state composed of 81 receptors, well within the plausible range, has
a median lifetime of >25,000 time steps. Experiments in which
receptor dwell time is indirectly monitored by using overexpression
of tagged GluR2 receptors in a slice result in estimated receptor
dwell times of 10-30 min (1, 2). Using a receptor dwell time of 20

14444 | www.pnas.org/cgi/doi/10.1073/pnas.0506934102

min, we find that a cluster with 81 receptors in the initial state has
a lifetime of >1 year. Although a cluster lifetime of 1 year is still
significantly less than the lifetime of memories in a human, the
cluster model could be a mechanism to bridge a significant portion
of the gap between receptor dwell times and the lifetime of
memory. However, because the estimates of receptor dwell time are
indirect and because the system used has several properties that
could alter the result with respect to a synapse in vivo, it might be
possible that the real receptor dwell time is much larger. If the
receptor dwell time were 1 day, the cluster lifetime would be >65
years.

The model I have presented here is very abstract, and I do not
attempt to provide a molecular mechanism that could account for
the insertion and removal of receptors. There are many possible
mechanistic implementations that could fall under the same family
of models. The entity we call a receptor might be a single receptor,
but it may also be the complex of a receptor and its associated
proteins, or it might include more than one receptor. The removal
and insertion of a receptor might be carried out by endocytosis and
exocytosis (15) but also by diffusion of receptors within the synaptic
membrane (16, 17). The interactions between receptors might be
mediated by direct forces between membrane-embedded receptors,
the same type of interactions that might lead to aggregation of
different proteins (18). However, these interactions are quite likely
to depend on the more complex network of postsynaptic proteins
associated with the receptors (19, 20), in which case, the properties
of these dynamics will be largely independent of the underlying
physics of protein aggregation.

In the cluster model proposed here, the receptor’s on rate is
neighbor-dependent, and the off rate is constant. If the clusters are
viewed as aggregates, it might seem that it is more natural to assume
the opposite. I have examined the consequences of this off-rate
model, and in section 2 of Supporting Text, 1 demonstrate that
although it does extend the lifetime of clusters, it does so by
extending the dwell time of receptors, not by extending the ratio of
cluster lifetime to receptor dwell time. What are possible mecha-
nisms that could support an on-rate model? A constant off rate
could result if the molecular machinery that internalizes receptors
operates primarily on “tagged” receptors, where the tag might
correspond to their phosphorylation state (21). If this tagging
procedure proceeds at a fixed rate, then the off rate will be constant.
A neighbor-dependent on rate could come about if the nearby
receptors act to somehow reduce the energetic cost of inserting a
receptor in their vicinity, which could occur directly by electromag-
netic shielding or indirectly through the network of synaptic pro-
teins linked to the receptors. Another possibility is that the on rate
is an effective rate brought about by the formation of a diffusive trap
caused by clusters. This alternative is consistent with recent exper-
imental findings that show that receptors diffuse at two distinct
rates, with a much lower rate spatially coincident with locations of
synaptic contacts (16, 17). The consequences of this diffusive trap
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model are not trivial, and homology with the cluster model is not
evident.

Different mechanisms of interaction between receptors, and
receptor trafficking, could imply significantly different specific
properties and lifetimes for receptor clusters. For example, if
insertion and removal are carried out by exocytosis and endocytosis
of groups of several receptors, then the effective number of
“receptor units” in a cluster would be lower, and the lifetime of
clusters might be significantly lower. If receptors in the cluster are
exchanged by diffusion through the membrane, exchange of recep-
tors would occur only through the cluster boundaries, which might
alter the stability characteristics of receptor clusters. Although
different mechanisms might have significantly different quantita-
tive consequences, the central aim of this paper is not to identify the
exact biophysical mechanisms but to propose a different idea at a
more abstract level.

The cluster model is an alternative to theories of synaptic stability
that rely on a molecular switch (3, 4, 5). It differs fundamentally
from molecular switch theories because it does not depend on the
existence of bistable states of chemical equilibrium. It also proposes
an alternative to more recent theories that depend on prion-like
properties of synaptic proteins (22). The cluster theory depends on
interactions within clusters of receptors and is therefore fundamen-
tally different from theories that are based on the state of single
proteins, independent of their interactions. The theory is general
enough to allow that different types of mechanisms might exist in
the same synapses, possibly to account for stability on different time
scales.

Previously, a receptor mosaic hypothesis proposed that receptor
aggregates in the postsynaptic and presynaptic membrane can form
a computational molecular network (23, 24). Although the assump-
tions of this hypothesis are reminiscent of the cluster model, it does
not address the issue of synaptic stability, the central challenge
addressed by the cluster model.

Although I am not offering a detailed mechanistic description of
the cluster model, it is possible to identify potential molecular
building blocks of the model and of the bidirectional plasticity of
receptor clusters. One possible interpretation is that the first stable
population of AMPA receptors is composed of GluR2/3 hetero-
mers. This interpretation is consistent with the observation that
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Shouval

AMPA receptors composed of GIuR2 subunits are constitutively
recycled in and out of the synapse in an activity-independent
manner (15, 2). According to this interpretation, the second
population of receptors, necessary for LTP, are heteromers that
include a GIuR1 subunit that are delivered to synapses in an
activity-dependent manner (2). If LTD is implemented by increas-
ing the rate of endocytosis of AMPA receptors, this process could
be facilitated by phosphorylation of the serine 880 site on the GluR2
subunit, which increases the internalization rate of these receptors
(21). Another possible interpretation is that the receptors are
heteromers that include the GluR1 receptor and that these recep-
tors are constitutively phosphorylated at serine 845 (25-28). In-
duction of LTP is achieved by transient phosphorylation of GluR1
receptors at both serine 845 and serine 831, which reduces the value
of their lattice repulsion constant (L,). This doubly phosphorylated
conformational state is known to be associated with the induction
of LTP (27). According to this interpretation, the induction of LTD
is obtained by dephosphorylation of both serine 831 and 845 sites
(26, 29), a condition associated with an increased internalization
rate of AMPA receptors. These two different interpretations are
not mutually exclusive and can possibly complement each other.

Experimental tests of the fundamental postulate of this model,
that insertion of a new receptor is more likely in the vicinity of other
receptors, are difficult because the diffraction limit makes it difficult
to resolve single receptors optically. I have proposed an alternative
test that relies on fluctuation analysis of receptor numbers. This test
is based on the finding that the cluster model has relatively small
fluctuations compared with an equilibrium model. Experimental
techniques to examine this fluctuation must have a low variability
in their measurements to avoid a significant overestimate of the
variability in the sample. It is currently hard to find physiological or
anatomical data that have sufficient precision to test receptor
number fluctuations. I am hopeful that publication of this theory
will encourage experimental groups to devise tests for the assump-
tions or consequences of this model.
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